If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+16x-3417=0
a = 2; b = 16; c = -3417;
Δ = b2-4ac
Δ = 162-4·2·(-3417)
Δ = 27592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{27592}=\sqrt{4*6898}=\sqrt{4}*\sqrt{6898}=2\sqrt{6898}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{6898}}{2*2}=\frac{-16-2\sqrt{6898}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{6898}}{2*2}=\frac{-16+2\sqrt{6898}}{4} $
| 2x/3+9=100 | | x/2+1.25x/2+3x/8=150 | | x/2+1.25x/2+3x/2=150 | | -4d+6=-7 | | x+2=−1.4 | | 28=-12+4x | | 2/3(x+3)=1/2(x+5) | | 10x-1=82 | | 4-(5/2)*(1/10*x)=1 | | 4-(5/2)*((1/10)*x)=1 | | 2+4x=3+6x-7 | | (x)-(8/3)*(x)=-10 | | 12/7x=x/2+17/2 | | 5=-3n+3n | | X+4.7=0.3x+9.6 | | -1=-1+2x-5x | | 4(5x-2)+3=11 | | -4=n-n | | n-9/2=-2 | | f(6)=6+9 | | 4=6a-6a | | -3.8+0.8x=-5.4 | | 2x=18+4x | | 3(b-2)=-6(b+4) | | -3(x-7)=-3(2+2x) | | 0=6n+5n | | -4k+24=-2(3k-6) | | 18x+5=−1+2x | | 18x+5=₋1+2x | | -19=-(g−-11) | | 5h-2=h12 | | 4/11x=32 |